Scalability of quantum computing based on nanomechanical resonators
نویسندگان
چکیده
منابع مشابه
Damping of nanomechanical resonators.
We study the transverse oscillatory modes of nanomechanical silicon nitride strings under high tensile stress as a function of geometry and mode index m≤9. Reproducing all observed resonance frequencies with classical elastic theory we extract the relevant elastic constants. Based on the oscillatory local strain we successfully predict the observed mode-dependent damping with a single frequency...
متن کاملProbing tiny motions of nanomechanical resonators: classical or quantum mechanical?
We propose a spectroscopic approach to probe tiny vibrations of a nanomechanical resonator (NAMR), which may reveal classical or quantum behavior depending on the decoherence-inducing environment. Our proposal is based on the detection of the voltage-fluctuation spectrum in a superconducting transmission line resonator (TLR), which is indirectly coupled to the NAMR via a controllable Josephson ...
متن کاملQuantized nanomechanical resonators
are well suited to such explorations. Their dimensions not only make them susceptible to local forces, but also make it possible to integrate and tightly couple them to a variety of interesting electronic structures, such as solid-state twolevel systems (quantum bits, or qubits), that exhibit quantum mechanical coherence. In fact, the most-studied systems, nanoresonators coupled to various supe...
متن کاملNonlinear Dynamics of Nanomechanical Resonators
In the last decade we have witnessed exciting technological advances in the fabrication and control of microelectromechanical and nanoelectromechanical systems (MEMS&NEMS) [16, 19, 26, 54, 55]. Such systems are being developed for a host of nanotechnological applications, such as highly sensitive mass [25, 34, 67], spin [56], and charge detectors [17, 18], as well as for basic research in the m...
متن کاملHigh frequency MoS2 nanomechanical resonators.
Molybdenum disulfide (MoS2), a layered semiconducting material in transition metal dichalcogenides (TMDCs), as thin as a monolayer (consisting of a hexagonal plane of Mo atoms covalently bonded and sandwiched between two planes of S atoms, in a trigonal prismatic structure), has demonstrated unique properties and strong promises for emerging two-dimensional (2D) nanodevices. Here we report on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2012
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.85.042326